

Rome, Hotel NH Collection - Vittorio Veneto

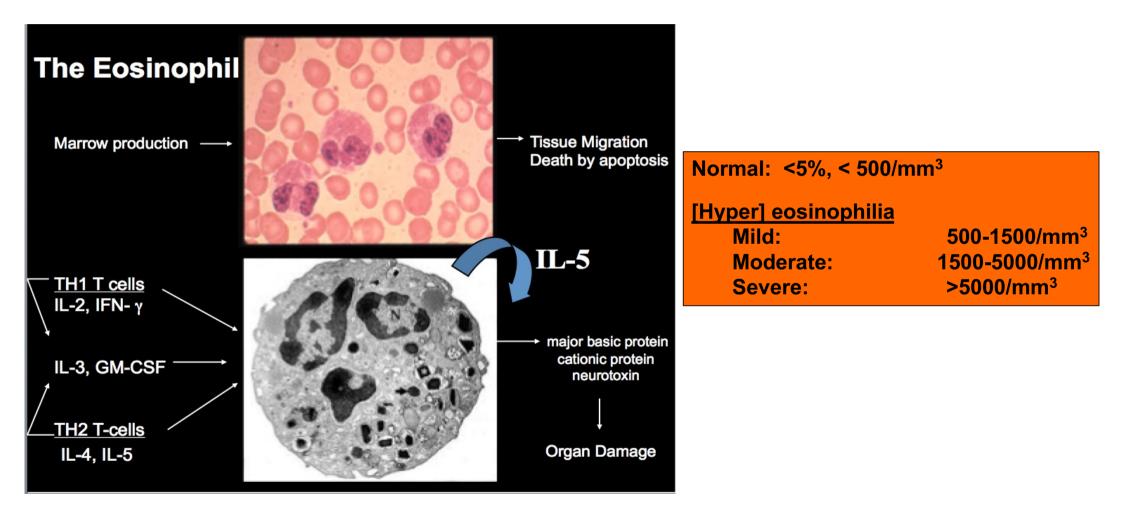
May 5-6, 2022

AlL President: P. Toro Coordinators: A.M. Carella, S. Amadori

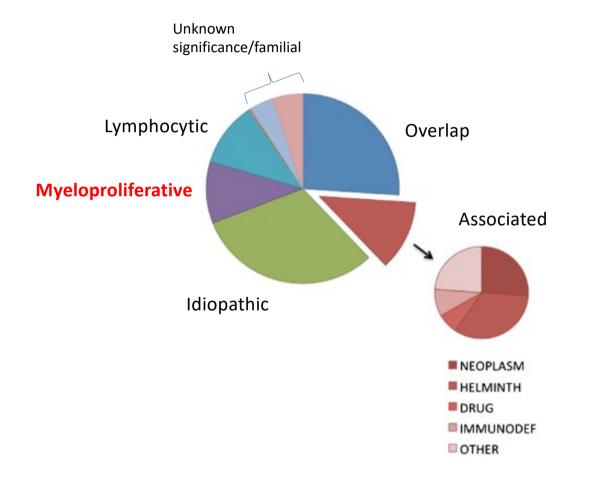
UNDER THE AUSPICES OF:

SIES

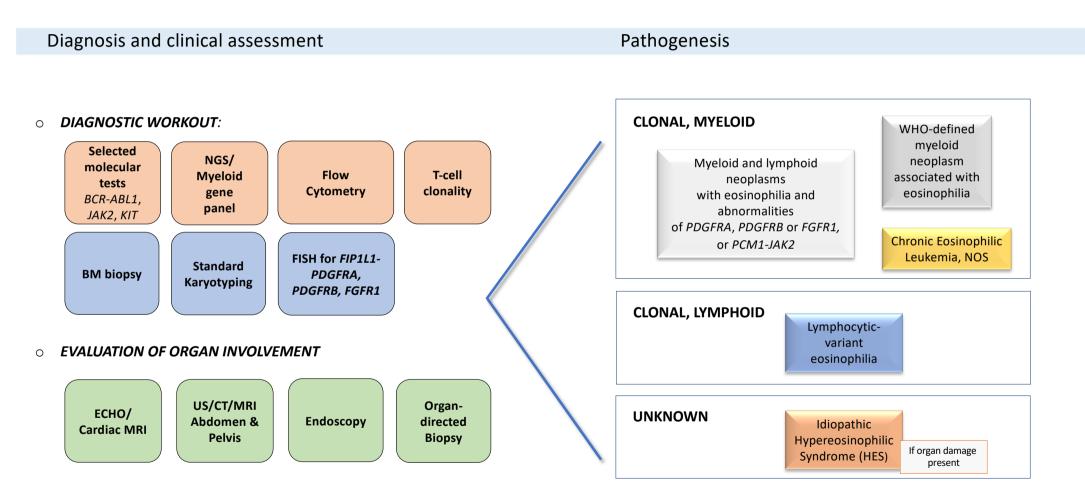
Coordinators: A.M. Carella, S. Amadori



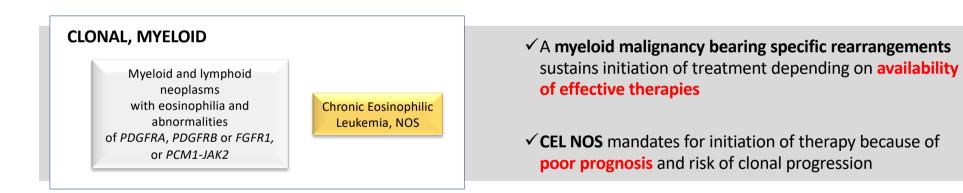
Hypereosinophilias with and without genetic rearrangement


Francesco Mannelli, MD

CRIMM – AOU Careggi, Florence, Italy


Eosinophil Biology and Definition of Hypereosinophilia

Eosinophilia: clonal vs. reactive



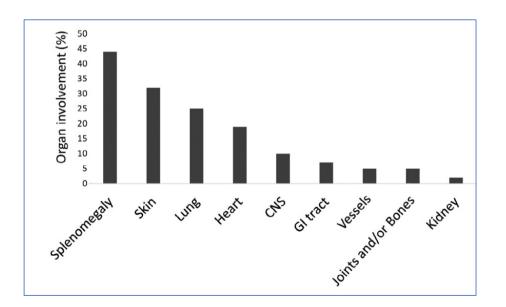
Eosinophilic disorders

Eosinophilic disorders

> Primary, clonal underlying disease and the presence of organ damage represent the basis for clinical management

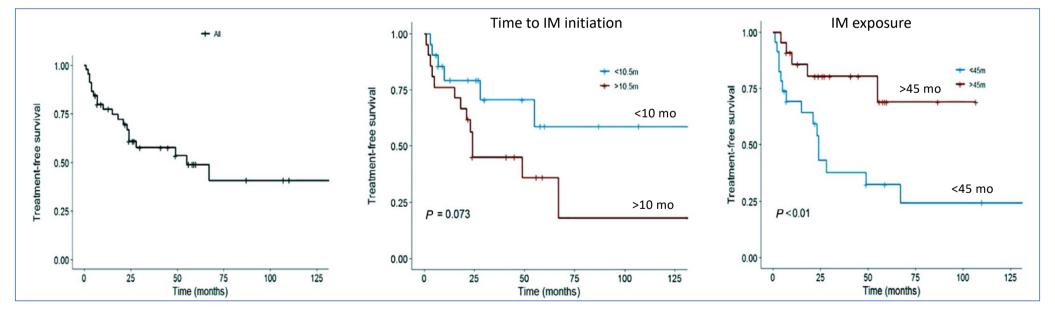
CLONAL, MYELOID

Myeloid and lymphoid		
neoplasms		
with eosinophilia and		
abnormalities		
of PDGFRA, PDGFRB or FGFR1,		
or PCM1-JAK2		


Breakpoint	Gene		
4q12	PDGFRA		
5q33	PDGFRB		
8p11	FGFR1		
9p24	JAK2		

o FIP1L1-PDGFRA+ Myeloid Neoplasms

- ✓ Not visible with standard cytogenetics (Detectable by FISH or RT-PCR)
- ✓ Elevated serum tryptase


Exquisite sensitivity to IMATINIB 100 mg daily

 Complete molecular remissions achieved rapidly (e.g. 3 months). Steroids should be added in the first days of therapy with evidence of cardiac involvement

FIP1L1-PDGFRA+ Myeloid Neoplasms - treatment discontinuation

- Imatinib discontinuation is debated also due to scarcity of data (about 200 cases reported overall); the rate of relapse sets around 50% with frequent obtainment of response after re-exposure to Imatinib
- > Maintenance dosing of 100 mg/week is feasible in some patients achieving CMR (Helbig et al, Br J Haematol, 2008)
- Role for time of exposure to Imatinib

Rohmer, AJH 2021

CLONAL, MYELOID

Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB or FGFR1, or PCM1-JAK2

Breakpoint	Gene
4q12	PDGFRA
5q33	PDGFRB
8p11	FGFR1
9p24	JAK2

• **PDGFRB**-rearranged Myeloid Neoplasms

PDGFRB-Rearranged Myeloid Neoplasms

- Prototypic ETV6 (TEL)-PDGFRB fusion described by Golub et al in 1994; > 25 fusion partners described
- **Phenotype:** Usually an MDS/MPN overlap (e.g. CMML or atypical CML) with eosinophilia; myeloid blast phase and B/T-cell lymphoblastic leukemia/lymphoma less common
- Diagnosis: Standard karyotyping usually exhibits a reciprocal translocation involving 5q31~q33; complex karyotypes observed
 - FISH probes can be used to confirm involvement of PDGFRB
 - PCR required to confirm fusion partners
- **Treatment**: Imatinib <u>400 mg daily</u> recommended; doses of 100 mg/d have been used

CLONAL, MYELOID

Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB or FGFR1, or PCM1-JAK2

Breakpoint	Gene
4q12	PDGFRA
5q33	PDGFRB
8p11	FGFR1
9p24	JAK2

• **FGFR1**-rearranged Myeloid/Lymphoid Neoplasms

FGFR1-Rearranged Neoplasms

- First described in 1995; 13 fusion partners since described
- **Phenotype**: MPN or AML, usually with eosinophilia; B/T-cell lymphoma; trilineage disease; rare cases with atypical mast cells / mastocytosis
- **Diagnosis:** Cytogenetically visible reciprocal translocations involving chromosome breakpoint 8p11-12; additional cytogenetic abnormalities
 - *Historically referred to as stem cell leukemia/lymphoma or 8p11 myeloproliferative syndrome*
- **Biology:** Arises in a multipotent hematopoietic progenitor
- Clinical course: Aggressive; often terminates in AML in 1-2 yrs
- **Therapy**: Intensive AML/ALL **chemotherapy** followed by transplant; transient responses with **Ponatinib**; selective and potent inhibitors of *FGFR1* such as **PEMIGATINIB**

FGFR1-Rearranged Neoplasms

FIGHT-203: A Phase 2, Open-label Study Evaluating the Efficacy and Safety of Pemigatinib in Patients With MLN Harboring *FGFR1* Rearrangement: Study Design

34 pts enrolled

	CR, n (%)		CCyR, n (%)	
	Investigator	CRC	Investigator	CRC
Responses, N=31 for CR and N=33 for CCyR	20	24	24	25
	(64.5)	(77.4)	(72.7)	(75.8)
CP disease only, N=18	15	16	14	16
(CP without EMD)	(83.3)	(88.9)	(77.8)	(88.9)
Any BP component, N=13	5	8	8	7
(BP with or without EMD; CP with EMD; EMD only)	(38.5)	(61.5)	(61.5)	(53.8)
Treated MLN with no morphologic evidence of disease but	NE	NE	2	2
persistent cytogenetic abnormality, N=2			(100)	(100)

The most common treatment-emergent AEs were:

- ✓ hyperphosphatemia (68%)
- ✓ alopecia (59%)
- ✓ diarrhea (50%)
- ✓ stomatitis (44%)
- ✓ anemia (35%)

• Long-term treatment option for pts ineligible for HSCT or bridging strategy to HSCT

Gotlib et al, ASH 2021

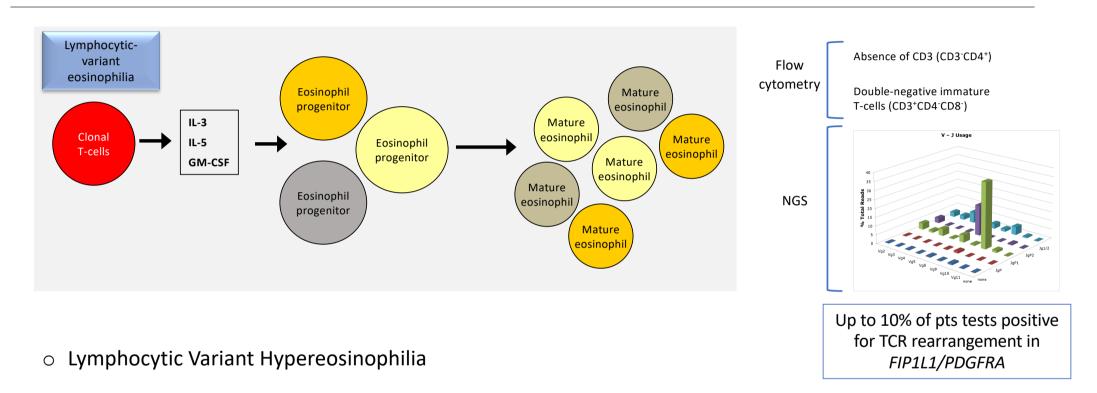
CLONAL, MYELOID

Chronic Eosinophilic Leukemia, NOS

o Chronic Eosinophilic Leukemia, NOS

Key diagnostic criterion: evidence of clonal myeloid involvement (blasts, chromosomal abnormalities)

+ exclusion of other myeloid neoplasms


✓ A challenge with IMATINIB might be attempted in order to assess potential sensitivity (reported cases with *KIT* M541L somatic mutation)

✓ **HYDROXYUREA** and **STEROIDS** can be used to control disease manifestations

✓ ALLOGENEIC HSCT should be considered in selected cases due to poor survival

Iurlo et al, Oncotarget 2014;5(13):4665 Helbig et al, AJH 2012;87(6):643

Eosinophilic disorders – lymphocytic variant

✓ STEROIDS are considered the first-line therapy. Disease control often requires long-term administration of therapy

The pathogenetic mechanism sustains the application of therapeutic approaches targeting T-cell clones:

- Cyclosporine
- Anti-CD52 Alemtuzumab

Eosinophilic disorders – HES

Idiopathic Hypereosinophilic Syndrome (HES)

Idiopathic Hypereosinophilic Syndrome (HES)

- ✓ A watch-and-wait approach is acceptable for asymptomatic patients with absolute eosinophil count >1.500/microliter and <u>no evidence of myeloid neoplasm and end-organ manifestations</u>
- ✓ Pts should be closely monitored for early organ damage (echocardiography, serum troponin level, pulmonary function testing)
- STEROIDS are considered the first-line therapy
 Prednisone (PDN) 1 mg/kg for 15 days followed by slow dose-tapering
- ✓ When long-term treatment (PDN >10 mg daily) is required for disease control, steroid-sparing therapies should be used:
 - Hydroxyurea
 - Interferon- α
 - Monoclonal antibodies vs IL-5/IL-5-receptor (Mepolizumab)

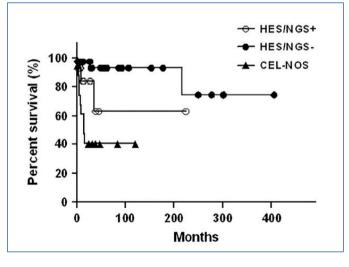
✓ **IMATINIB** is a reasonable try, especially with prominent myeloproliferation and/or dysplasia

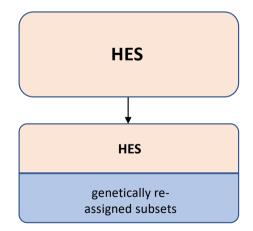
Eosinophilic disorders – HES

Idiopathic Hypereosinophilic Syndrome (HES)

Targeted next-generation sequencing identifies a subset of idiopathic hypereosinophilic syndrome with features similar to chronic eosinophilic leukemia, not otherwise specified

Sa A Wang^{1,11}, Wayne Tam^{2,11}, Albert G Tsai³, Daniel A Arber³, Robert P Hasserjian⁴, Julia T Gever², Tracy I George⁵, David R Czuchlewski⁵, Kathryn Foucar⁵, Heesun J Rogers⁶, Eric D Hsi⁶, B Bryan Rea⁷, Adam Bagg⁷, Paola Dal Cin⁸, Chong Zhao¹, Todd W Kelley⁹, Srdan Verstovsek¹⁰, Carlos Bueso-Ramos¹ and Attilio Orazi²




43%
36%
29%
22%
14%
14%

Wang et al, Mod Pathology, 2016;29(8):854

STAT5B mutations (~ 2% of CEL/HES)

Cross et al, Leukemia, 2019;33:415

The correlation between the extent of eosinophilia and organ damage is uncertain: <u>there are not clear evidences</u> <u>supporting the initiation of therapy merely depending on absolute eosinophil count</u>

With overriding clinical manifestations prompting immediate initiation of therapy, adequate sampling for genetic abnormalities must precede treatment starting

> Identification of **recurrent rearrangements** is the basis for delivery of targeted therapies:

- FIP1L1-PDGFRA+ Myeloid Neoplasms: Imatinib
- PDGFRB rearranged Myeloid Neoplasms: Imatinib
- o FGFR1 rearranged Myeloid/Lymphoid Neoplasms: intensive chemotherapy, HSCT; selective inhibitors (Pemigatinib)

In lymphocytic variant and idiopathic hypereosinophilic syndrome, steroids are the conventional first-line therapeutic modality. Novel agents are emerging as effective steroid-sparing alternatives (Mepolizumab)